One of the biggest problems in environmental education is the disconnect between scientists and students. Finding a way to teach complex scientific concepts that is engaging is important for both learning and for lifelong compassion for these systems. In order to explore this concept, I completed each of the steps in science communication: The first of which was to pose a question: *Is formal or informal science education a more effective method of teaching?* Using data and information about fish feeding mechanisms and diets from my time at NOAA’s Food Habits Lab, I developed two lesson plans to administer to Washington Middle School’s 7th grade science classes. One was ‘formal’ and the other was ‘informal.’ For each class I took engagement observations and assessed retention. The final step was to analyze this data. The key lessons from this project are as follows: first, there are many factors that scientists must address when attempting to make complex material digestible by students, including setting, audience, and resources. Second, it is critical to ensure that every student’s needs are being met, as not every student learns best the same way. Finally, students learn and remember more when they are able to engage with the material in a non-traditional setting. Teaching children complex scientific concepts is key to the preservation of our earth, and a better future for our environment starts with equipping scientists to understand what growing brains need in order to engage, retain, and have fun.