Importance of Green Stormwater Infrastructure/Rain Garden in the Pacific Northwest

Yunchen Zhang*, Program on the Environment & Landscape Architecture, University of Washington
Site Supervisor: John Coghlan Homegrown Organic
Faculty: Laure Heland, Landscape Architecture, University of Washington

Background
Traditional stormwater management systems often collect rainwater from impervious surfaces like roofs, driveways, and roads, and channel it into storm drains or sewers. This rapid runoff can lead to increased erosion, overloading of sewer systems, and contamination of water bodies with pollutants, what can we do to improve it?

Research Question
What does the rain garden implementation process look like? How do homeowner perceive the concept and what’s their response and consideration?

Internship
- Conducted site visit and design consult with multiple homeowners to design the front garden with hand-drawing and AutoCAD
- Did site maintenance for the elder condominium

Research & Method
- Conducted 10+ Literature
- Interviewed a professional from the public agency 700 gallon million, a designer from homegrown organic and 3 household owners
- Case study with

Finding & Result

Implication
- With the interview and talk to the client face-to-face, benefits are:
 - **Aesthetical Value:**
 - Zones of various plants
 - Increase biodiversity and habitat, such as attracting pollinator species
 - **Environmental Value:**
 - Climate Change Mitigation
 - Removal of Pollutants Management with better soil
 - **Economic Value:**
 - Raise neighborhood/house value
 - Less amount of water utility bill

1 rain garden can absorb up to 30,000 gallons of water per year can fill an Olympic-sized swimming pool.

Acknowledgement
Thanks for professor Laure Heland, John Coghlan, my friend Yuntian Shi support, Halliday, Yunchen Zhang and family