

W

Barriers to Salvaged Lumber Usage and Solutions to Increase Use in King County

Lauren Harris*, Program on the Environment, University of Washington Site Supervisor: Kinley Deller and Alex Erzen, King County Solid Waste Division Faculty Advisor: Indroneil Ganguly, School of Environmental and Forest Sciences, University of Washington

Background

- In 2022, 184,736 tons of construction waste was sent to landfills, this waste is toxic to the surrounding environment.
- One solution to this waste issue is circularity, a type of economic model that is restorative in design, materials are being reused.
- Deconstruction is a process of taking apart buildings to preserve materials for reuse.
- The aim of my research is to understand **current perspectives** of circularity, identify **barriers** to using salvaged lumber, and identify **solutions** to these barriers.

Figure 1: Figure A and B depict examples of waste lumber from deconstruction.

Questions

What are current perspectives of circularity?
What are barriers to using salvaged lumber?
What are solutions to these barriers?

Internship/Methods

My internship was done with King County Solid Waste Division. This involved collecting information on interest and knowledge on a salvaged lumber warehouse through surveys (see fig 2. and 3.).

Research was done with human subject research and literature review.

- Human subject research done with surveys and interviews using contact list from site supervisors.
- Literature reviews were done using UW and Google Scholar databases.

Results

Interest and Knowledge in Circular Economy

Figure 2: level of familiarity about the circular economy from surveys. Data is shown in percentages on a likert scale, a system used to scale responses from negative to positive.

Figure 3: interest in participating in a circular economy from surveys. Data is shown in percentages on a likert scale, a system used to scale responses from negative to positive.

Barriers

Technology

Lack of technology to recycle materials, lack of reports on building materials needed for deconstruction.

Regulatory

Lack of policy incentive, inconsistency in building codes and material over time and location.

Financial

Expensive for usage, transporting, processing, and storage of salvaged lumber.

Social

Lack of interest or knowledge by consumers, perceived barriers due to lack of knowledge.

Results Continued

Solutions

Technology

More research on machines to clean and repurpose salvaged lumber, more detailed reporting about building materials when being built.

Regulatory

Increases in policy incentives for using salvaged lumber within green building criteria, policy standardization of building code and materials.

Financial

Salvaged lumber warehouse, training for specialized labor in industry and schools.

Social

Increases in education and awareness about sustainability in the construction industry, examples include workplace training and facilitation of clients sharing experiences.

Significance

• Research findings can be used to implement solution strategies within King County and industry.

Industry

Future

- More availability of reused material due to new deconstruction techniques.
- Better cost efficiency within industry due to salvaged lumber warehouse.
- Policy incentives supporting circularity setting an example for future environmental policies.
- Lumber cleaning technology to pave the way for future research.

Acknowledgements

Thank you to my site supervisors Kinley Deller and Alex Erzen, my faculty advisor Indroneil Ganguly, my internship buddy Anna Schmitz, and my family for supporting me in this process.